Abstract
As a novel typical wind-sensitive structure, the wind load and wind-induced structural behaviors of super-large straight-cone cooling towers are in an urgent need to be addressed and studied. A super large straight-cone steel cooling tower (189 m high, the highest in Asia) that is under construction in Shanxi Power Plant in China was taken as an example, for which four finite element models corresponding to four structural types: the main drum; main drum + stiffening rings; main drum + stiffening rings + auxiliary rings (auxiliary rings are hinged with the main drum and the ground respectively); and main drum + stiffening rings + auxiliary rings (auxiliary rings are fixed onto the main drum and the ground respectively), were established to compare and analyze the dynamic properties and force transferring paths of different models. After that, CFD method was used to conduct numerical simulation of flow field and mean wind load around the cooling tower. Through field measurements and wind tunnel tests at home and abroad, the reliability of using CFD method for numerical simulation was confirmed. On the basis of this, the surface flow and trail characteristics of the tower at different heights were derived and the wind pressure distribution curves for the internal and external surfaces at different heights of the tower were studied. Finally, based on the calculation results of wind-induced responses of the four models, the effects of stiffening rings, auxiliary rings, and different connecting modes on the dynamic properties and wind-induced responses of the tower structure were derived and analyzed; meanwhile, the effect mechanism of internal suction on such kind of cooling tower was discussed. The study results could provide references to the structure selection and wind resistance design of such type of steel cooling towers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have