Abstract
Subtractive Pixel Adjacency Matrix (SPAM) features perform well in detecting spatial-domain steganographic algorithm. Further, some methods of SPAM features can be applied to rich models and steganalysis based on deep learning. Therefore, this paper presents a study on SPAM features and it is divided into two parts: in the first part, impact of spatial-domain steganographic on difference between adjacent pixels is first analyzed. Then, three SPAM features are proposed with the same range of differences and different orders of Markov chain. Following that, the influences of order of Markov chain and range of differences on SPAM features are analyzed, and we find that detection accuracy of SPAM features increases with the range of differences increasing; in the second part, SPAM feature is first divided into several modules according to the conclusion. Then, taking detection accuracy of support vector machine (SVM) classifier and mutual information as metrics and module as a unit, a Novel Feature Selection (NFS) algorithm and an Improved Feature Selection algorithm are proposed. Experimental results show that the NFS algorithm can achieve higher detection accuracy than several existing algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.