Abstract
This paper presents an improved firefly algorithm (DyFA) for feature selection that improves the convergence rate and reduces computational complexity through dynamic adaptation in blind image steganalysis. The alpha and gamma parameters of the Firefly algorithm are made to vary dynamically with each generation for faster convergence. If firefly algorithm’s performance does not improve for certain numbers of iterations then the particles with the worst fitness function values are replaced with new particles in the search space and particle dimensions are reduced by eliminating redundant features. This approach is effective in reducing computational complexity and improving detection capability of the classifier. To further reduce the computational complexity a hybrid DyFA is designed by ensemble of a filter approach (t test + regression) and wrapper approach (DyFA) incrementally. In this study, support vector machine classifier with radial basis function kernel and ten fold cross validation is used to evaluate the effectiveness of the proposed Firefly algorithm. DyFA is compared with well-known wrapper feature selection algorithms. Experimental results are performed on datasets constructed from four steganography algorithms nsF5, Perturbed Quantization, Outguess and Steghide with subtractive pixel adjacency matrix (SPAM) feature vector from spatial domain and Cartesian Calibrated features extracted by Pevnýfeature vector from transform domain. Experimental results demonstrate that DyFA reduces computation time and improves classification accuracy as compared to other feature selection algorithms. Hybrid DyFA shows an improvement in classification accuracy and in eliminating redundant features in more than 85 % of cases with respect to hybrid GLBPSO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Machine Learning and Cybernetics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.