Abstract

Numerous studies can be found in literature concerning the idea of learning cellular automata (CA) rules that perform a given task by means of machine learning methods. Among these methods, genetic algorithms (GAs) have often been used with excellent results. Nevertheless, few attention has been dedicated so far to the generality and robustness of the learned rules. In this paper, we show that when GAs are used to evolve asynchronous one-dimensional CA rules, they are able to find more general and robust solutions compared to the more usual case of evolving synchronous CA rules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call