Abstract

Electrochemical CO2 reduction reaction (CO2RR) technology can reduce CO2 emission with converting excess electrical energy to high-value-added chemicals, which however needs further improvement on the electrolyser cell performance. In this work, extensive factors were explored in continuous CO2 electrolysers. Gold, one of the benchmark materials for CO2RR to produce CO, was used as the catalyst. Electrolyser configurations and membrane types have significant influences on cell performance. Compact MEA-constructed gas-phase electrolyser showed better catalytic performance and lower energy consumption. The gas diffusion electrode with a 7:1 mass ratio of total-catalyst-to-polytetrafluoroethylene (PTFE) ionomer exhibited the best performance. At a low total cell voltage of 2.2 V, the partial current density of CO production achieved 196.8 mA cm−2, with 90.6% current efficiency and 60.4% energy efficiency for CO producing respectively. Higher CO selectivity can be achieved using anion exchange membranes, while higher selectivity for hydrogen and formate products can be achieved with cation exchange membranes. This research has pointed out a way on how to improve the CO2RR catalytic performance in flow cells, leaving aside the characteristics of the catalyst itself.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.