Abstract

Titanium alloys are widely used in aerospace industries, due to its high strength to weight ratio and light weight. This paper investigates high speed end milling of titanium alloy (Ti–6% Al–4% V) using carbide insert based end mill cutter. Effects of cutting forces during high speed machining of titanium alloys have got higher attention in selecting the optimal cutting conditions to improve the production and tool life. Due to Titanium alloy's low thermal conductivity, more heat concentration takes place on cutting tool during rough machining. The heat generated increases the temperature of the cutting tool and affect the surface integrity of the workpiece and also cause tool wear. In this study experiments have been carried out under dry cutting conditions. The cutting speeds selected for the experiments are 120, 150 and180 m/min. The depth of cuts and feed rate were selected to suit finish machining. For conducting the experiments single insert based cutting tool is used. Experiments were conducted based on the Taguchi's design of experiments, in order to analyse the effect of cutting parameters on cutting force, temperature and surface roughness. From this study it is found that depth of cut and feed rate have higher effect on cutting forces when compared to cutting speed whereas the effect of cutting speed has higher effect on temperature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.