Abstract

Noncondensable gases deteriorate heat transfer in the condensation process. It is therefore necessary to study vapor–gas condensation heat transfer process and analyze main factors influencing the process. Based on the double-film theory and the Prandtl boundary layer theory, this investigation developed a mathematical model of gas–liquid film thicknesses and local heat transfer coefficient for studying laminar film condensation in the presence of noncondensable gas over a horizontal tube. Induced velocity in the gas film, gas–liquid interfacial shear stress, and pressure gradient were considered in the study. Importantly, gas–liquid film separations were analyzed in depth in this paper. It obtained the distributions of gas–liquid film thicknesses, local heat transfer coefficient, condensate mass flux, and gas–liquid interfacial temperature along the tube surface, and analyzed the influences of bulk velocity, total pressure, bulk mass concentration of noncondensable gas and wall temperature on them, providing a theoretical guidance for understanding and enhancing vapor–gas condensation heat transfer. Gas film thickness and gas–liquid film separations have certain effects on vapor–gas condensation heat transfer. The average dimensionless heat transfer coefficients are in agreement with the data from related literatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.