Abstract

Fused deposition modelling (FDM) and laser-based additive manufacturing (LBAM) are the essential technologies of 3D Printing under the technological platform of additive manufacturing (AM). This process involves layering tiny layers of a chosen material until the desired three-dimensional shape is achieved. FDM and LBAM have been commercialised and are also being deployed in a variety of medical fields. These technologies are worthwhile in reducing expenditures, increasing precision, and lowering operating and post-operative hazards, and the most crucial part is customisation. FDM is witnessing significant growth as an AM technology primarily because of its exceptional ability to construct functional parts with complex geometries. This study aims to investigate the effect of different process parameters such as build orientation, layer thickness, raster angle, air gap, printing speed, infill density, and extrusion temperature on the mechanical properties of FDM printed parts. This paper explores FDM and LBAM, the technological developments that have various applications in the medical field. Using a laser beam to fuse or melt successive layers of wire or powder material together to form three-dimensional objects is known as LBAM. It is one adaptable manufacturing process that is widely used to create metallic components with improved characteristics. By implementing FDM or LBAM technologies, surgeons can provide patients with precise and better information. The patient's adaption period for customised prostheses/implants is shorter, less painful, and less stressful. Where regular implants are often insufficient for some patients with complex circumstances, the ability to quickly manufacture personalised implants by using these technologies is quite helpful. This paper provides readers with an insight into the capabilities of FDM and LBAM in the medical field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call