Abstract

The friction and wear properties of the polyetheretherketone (PEEK) based composites filled with 5 mass% nanometer or micron Al 2O 3 with or without 10 mass% polytetrafluroethylene (PTFE) against the medium carbon steel (AISI 1045 steel) ring under the dry sliding condition at Amsler wear tester were examined. A constant sliding velocity of 0.42 m s −1 and a load of 196 N were used in all experiments. The average diameter 250 μm PEEK powders, the 15 or 90 nm Al 2O 3 nano-particles or 500 nm Al 2O 3 particles and/or the PTFE fine powders of diameter 50 μm were mechanically mixed in alcohol, and then the block composite specimens were prepared by the heat compression moulding. The homogeneously dispersion of the Al 2O 3 nano-particles in PEEK matrix of the prepared composites was analyzed by the atomic force microscopy (AFM). The wear testing results showed that nanometer and micron Al 2O 3 reduced the wear coefficient of PEEK composites without PTFE effectively, but not reduced the friction coefficient. The filling of 10 mass% PTFE into pure PEEK resulted in a decrease of the friction coefficient and the wear coefficient of the filled composite simultaneously. However, when 10 mass% PTFE was filled into Al 2O 3/ PEEK composites, the friction coefficient was decreased and the wear coefficient increased. The worn scars on the tested composite specimen surfaces and steel ring surfaces were observed by scanning electron microscopy (SEM). A thin, uniform, and tenacious transferred film on the surface of the steel rings against the PEEK composites filled with 5 mass% 15 nm Al 2O 3 particles but without PTFE was formed. The components of the transferred films were detected by energy dispersive spectrometry (EDS). The results indicated that the nanometer Al 2O 3 as the filler, together with PEEK matrix, transferred to the counterpart ring surface during the sliding friction and wear. Therefore, the ability of Al 2O 3 to improve the wear resistant behaviors is closely related to the ability to improve the characteristics of the transfer film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.