Abstract
Welded joints in naval ship hull structures are weak areas under explosive load, but there are relatively few studies investigating the failure characteristics of welded joints through dynamic fracture and explosion tests. In order to explore and predict the failure characteristics of welded joints under explosive load, instrumented Charpy impact tests, explosion tests, and numerical simulations were carried out. The dynamic fracture toughness of ultra-high strength ship hull structural steel welded joints was obtained, and the dynamic stress intensity factors, together with the correlation between stress wave and crack propagation at different positions, were acquired. The results showed that the stress state at the crack tip of a Charpy impact specimen was consistent with that of a welded joint under explosive loads, and the crack initiated when the dynamic stress intensity factor exceeded the dynamic fracture toughness. The results indicated that the dynamic fracture toughness obtained by instrumented Charpy impact tests could be used to predict the crack initiation characteristics of welded structures under explosive load, and the stress wave at the crack tip was basically perpendicular to the crack propagation surface and promoted the rapid propagation of cracks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.