Abstract

Along with artificial intelligence technologies, deep learning technology, which has recently received a great deal of attention, has been studied on the basis of developed artificial neural networks. This thesis deals with the detection, recognition, judgment, and control that are included in the basic technologies of the autonomous driving subsystems to achieve fully autonomous driving. And this work solves many problems in this area. The use of the CARLA simulation in this project is the development of a deep learning intelligent autonomous driving system in the road environment. Autonomous driving recognizes the situation by processing the data collected through images from multiple sensors or lidars and cameras in real-time. In the cloud server process using real data, explore various deep learning models for traffic flow prediction, return the model trained onboard, perform the prediction and solve the problem of fully autonomous driving, including a module of control, which is a CARLA simulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.