Abstract

Many machine learning algorithms have been introduced to solve different types of problems. Recently, many of these algorithms have been applied to deep architecture models and showed very impressive performances. In general, deep architecture models suffer from the over-fitting problem when there is a small number of training data. In this article the attempt is made to remedy this problem in deep architecture with regularization techniques including overlap pooling and flipped image augmentation and dropout; the authors also compared a deep structure model (convolutional neural network (CNN)) with shallow structure models (support vector machine and artificial neural network with one hidden layer) on a small dataset. It was statistically confirmed that the shallow models achieved better performance than the deep model that did not use a regularization technique. Faces represent complex multidimensional meaningful visual stimuli and developing a computational model for face recognition is difficult. The authors present a hybrid neural-network solution which compares favorably with other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.