Abstract

A comprehensive description of the entire process of N2 molecules on Ti surface and in Ti bulk as well as the underlying nitridation mechanism were explored via first-principles calculations. The reaction process was divided into four steps and the mechanism for the determined reaction path was analyzed. Utilizing the methodology of the climbing image nudged elastic band (CI-NEB), we investigated the diffusion energy barrier at each step of the reaction path, and determined the minimum energy path (MEP) for the complete reaction path. The calculated adsorption energies of N atoms and N2 molecules show that they are most stable at the HCP site on the α-Ti (0001) surface. Charge transfer provided theoretical support for N2 dissociation. We calculated the diffusion energy barrier of the N atom by migrating from the HCP site to the octahedral (O) site, which the N atom prefers to occupy. The diffusion coefficient is highest when the diffusion channel travels from one O site to the next layer of the O site via the next H site, it takes the most energy to complete, compared to those other steps. Lastly, we determined the rate-determining steps of the reaction pathway for the entire nitridation process. This study provides valuable insight into the fundamental mechanisms governing the nitridation process of N2 molecules in titanium alloys. This study sheds light on the nitridation mechanism for N2 molecules in titanium alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.