Abstract

Comparisons are made between surface wind stress measurements obtained by the inertial-dissipation and direct covariance methods on a stable offshore tower and by the inertial-dissipation and bulk methods on a ship. The shipboard inertial-dissipation friction velocity measurements agreed very well with both the tower inertialdissipation and direct covariance values, to within 62% in the mean and with a 10% or lower rms scatter. The inertial-dissipation determinations also exhibited less scatter than the tower direct covariance measurements. A detailed error analysis indicates that shipboard inertial-dissipation wind stress values can have an accuracy of better than 15% in near-neutral conditions, as compared to an accuracy of roughly 30% for the bulk method. The accuracy of shipboard inertial-dissipation values was shown to be equal to that of direct covariance measurements from a tower. Errors in inertial-dissipation wind stress values are most likely due primarily to deviations from the assumed balance between turbulent kinetic energy production and dissipation and to errors in determining the wind speed variance spectra. Errors in direct covariance measurements are most likely due primarily to finite time averaging and to flow distortion effects, unless great care is taken to minimize or correct for flow distortion. The high accuracy of inertial-dissipation wind stress values found in this study, combined with the well-known difficulties in shipboard direct covariance measurements due to platform motion and flow distortion, demonstrate that the inertial-dissipation method is the best option at present for determining the wind stress from a ship.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call