Abstract
Tigris–Euphrates watershed was considered as one hydrologic unit, and a scientific assessment of its water resources was performed. Accordingly, (a) an inventory of land use/land cover, vegetation, soils, and existing hydraulic structures in the watershed was performed; (b) a regional hydroclimate model, RegHCM-TE, of the watershed was developed, and used to reconstruct historical precipitation data, to perform land hydrologic water balance computations for infiltration, soil water storage, actual evapotranspiration, direct runoff as input for streamflow computations, and to estimate irrigation water demands; and (c) a hydrologic model was developed to route streamflows within the river network of the watershed. Also, an algorithm for operating the reservoirs within the watershed was developed, and utilized to perform dynamic water balance studies under various water supply/demand scenarios to establish efficient utilization of the watershed’s water resources to meet the water demands of the riparian countries in the basin. Within this dynamic water balance framework, it is possible to assess and quantify the effect of sequential river flows on the chronologically sequential water balances over the watershed. The water balance study for the natural flow conditions prior to the development of large dams within TE basin, during the 1957–1969 critical period is presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.