Abstract

Data from the CYGNUS experiment has been used to examine ultra high energy (UHE) radiation associated with the X-ray binary star system Hercules X-1. A search for both pulsed, and unpulsed emission over time scales ranging from minutes to years has failed to yield a result of comparable significance to that of the previously published observation of July 24, 1986. A reassessment of this result in light of the number of hypotheses that have been examined for Hercules X-1 yields a probability estimate of 0.44% that the data is consistent with background fluctuations. If the number of independent source hypotheses is also accounted for, an overall chance probability of 1.8% is assessed for the observations of the CYGNUS experiment. The extensive air showers corresponding to the episode of July 24, 1986 contain a substantial muon content, in contradiction with traditional predictions for primary gamma-rays. No satisfactory theory has yet been put forward to explain this phenomenon. A further analysis of shower characteristics for events associated with this episode indicates a steeper radial dependence of the showerfront timing width at a chance probability level of 0.16%. This property might be explained by a model that invokes a forward-peaked and/or a deeply interacting component of the hadronic interaction in the atmosphere. The potential importance of UHE observations of Hercules X-1 is great. however the evidence is not yet compelling. Further observations will be necessary, to confirm the potential properties of associated UHE radiation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call