Abstract

Three-dimensional homogeneous isotropic turbulence is simulated using the finite difference lattice Boltzmann method (FDLBM). First, we analyze the characteristics of numerical viscosity of FDLBM, and present a method in which the numerical viscosity coincides with that of the Navier-Stokes based FDM. Second, we conducted simulations with the Smagorinsky model. In the energy spectrum E(k) one detects the inertial range E(k) ∼k-5/3; however, the large k range presents a persistent energy “tail,” which has also been found in direct simulations using conventional lattice Boltzmann scheme. This energy “tail” is is due to generation of non-physical longitudinal noise. However, for high Reynolds number flows this noise is shown to be negligible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.