Abstract

Two problems exist in the current studies on the application of the lattice Boltzmann method (LBM) to rarefied gas dynamics. First, most studies so far are applications of two-dimensional models. The numbers of velocity particles are small. Consequently, the boundary-condition methods of these studies are not directly applicable to a multispeed finite-difference lattice Boltzmann method (FDLBM) that has many velocity particles. Second, the LBM and FDLBM share their origins with the Boltzmann equation. Therefore, the results of LBM and FDLBM studies should be verified by the results of the continuous Boltzmann equation. In my review to date on the LBM studies, it appears that such verifications were seldom done. In this study, velocity slip and temperature jump simulations in the slip-flow regime were conducted using a three-dimensional FDLBM model. The results were compared with preceding theoretical studies based on the continuous Boltzmann equation. The results agreed with the theory with errors of a few percent. To further improve the accuracy of the FDLBM, it seems necessary to increase the number of velocity particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call