Abstract
U-bends are a common geometry in heat exchangers. In this paper, a U-bend in the vertical plane connected to horizontal straight pipes is considered. An initially stratified water/air flow moves upwards against gravity. The aim of this research is to investigate the internal flow profile and resulting force when the U-bend is subjected to a stratified air–water flow at the inlet. This is done numerically, i.e. by solving the unsteady Reynolds-averaged Navier–Stokes equations. For low mass flow rates, large gas bubbles are naturally formed at the entrance of the bend. The transient force on the tube allows to determine precisely the time instants of bubble initiation and thus to quantify the bubble frequency. Firstly, the tube is assumed to be rigid and the dependence of force oscillation on the inlet conditions is investigated. Secondly, the influence of the viscosity, wall wetting and the mass flow rate is analyzed. Finally, a fluid–structure interaction calculation is performed in order to quantify the vibration characteristics of the tube.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.