Abstract

Modern atmosphere pressure interface (API) enables high-efficiency coupling between mass analyzers in high vacuum and atmosphere ionization sources such as electrospray ionization (ESI) source. The transient gas flow entering API possesses strong compressibility and turbulent characteristics, which exerts a huge impact on ion transmission. However, the instantaneous nature and vortical morphology of the turbulence in API and its affection in ion transmission were hardly covered in the reported research. Here we conduct a transient turbulent flow-affected ion transmission evaluation for two typical APIs, the ion funnel and the S-lens, based on scale-resolving large eddy simulation and electro-hydrodynamical ion tracing simulation. In our simulation, the transient properties of the gas flow in the two APIs are illustrated and analyzed in-depth. After experimentally validated on a homemade ESI-TOF-MS platform, the results suggest that the ion funnel can achieve a higher droplet desolvation rate by introducing a unique droplet recirculation mechanism. Meanwhile, the less-dispersed gas flow in S-lens is beneficial in actuating ions axially. In conclusion, the application of the scale-resolving turbulence model helps us to understand the complicated fluid-ion interaction mechanism in APIs and is promising in the development of mass spectrometry instruments of higher performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call