Abstract

Surfactant-containing poly(vinyl alcohol) (PVA) cryogels have been prepared by drying and reswelling hydrogel patches, previously obtained by the freeze/thaw procedure, in decyltrimethylammonium bromide (C10TAB) aqueous solutions. The microstructural and diffusive properties of the resulting material have been characterized by a combined experimental strategy. Gravimetric measurements show that the cryogel maximum swelling is not affected by the surfactant. The surfactant concentration within the cryogel, measured by ion chromatography, is the same as that in the rehydrating surfactant solution. Electron paramagnetic resonance (EPR) spin-probe and small-angle neutron scattering (SANS) measurements show that surfactant self-aggregation in the gel is similar to that in water, occurring at the same critical concentration and resulting in the formation of micellar aggregates whose structure is not affected by the cryogel polymeric scaffold. However, both the micelle intradiffusion coefficients, measured by PGSE-NMR, and the spin-probe correlation times, measured by EPR, indicate that dynamic processes in the hydrogel are much slower than in bulk water. A quantitative analysis of these results suggests that the cryogel polymer-poor domains, in which surfactant molecules are solubilized, have an average dimension of approximately 0.1 microm. Interestingly the experimental data also show that the polymer-poor phase contains more polymer than expected, suggesting that the spinodal decomposition, which occurs during the freezing step of cryogel preparation, is not complete or prevented by ice formation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.