Abstract

The lubricating effectiveness of micropolar fluids in a dynamically loaded journal bearing is studied. On the basis of the theory of micropolar fluids, the modified Reynolds equation for dynamic loads is derived. Results from the numerical analysis indicated that the effects of micropolar fluids on the performance of a dynamically loaded journal bearing depend on the size of material characteristic length and the coupling number. It is shown, compared with Newtonian lubricants, that under a dynamic loading the micropolar lubricants produce an obvious increase in the oil film pressure and oil film thickness, but a decrease in the side leakage flow. It is also shown that the friction coefficient for a dynamically loaded journal bearing with micropolar fluids is in general higher than that of Newtonian fluids, which is not the same as the results for a steadily loaded journal bearing. Furthermore, a parametric study of flow and friction for different mass parameters keeping micropolar parameters fixed is undertaken. It is indicated that, with the increase of the mass parameters, the crank angles corresponding to the maximum flow are changed and the maximum friction coefficients are obviously decreased either for the Newtonian fluids or for the micropolar fluids.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call