Abstract

Receptor for Advanced Glycation End-products (RAGE) binds to a number of ligand families to display important roles in hyperglycemia, senescence, inflammation, neurodegeneration and cancer. It is reported that RAGE regulates the related biological processes via homo-dimerization by the transmembrane (TM) domain, and evidence further shows that the intracellular domain of RAGE has an influence on the dimerization activity of RAGE. In this study, we explored the underlying interaction mechanism of RAGE TM domains by multiscale coarse-grained (CG) dynamic simulations. Two switching packing modes of the TM dimeric conformations were observed. Through a series of site-directed mutations, we further emphasized the key roles of the A342xxxG346xxG349xxxT353xxL356xxxV360 motif in the left-handed configuration and the L345xxxG349xxG352xxxL356 motif in the right-handed configuration. In addition, we revealed that the juxtamembrane (JM) domain within JM-A375 can determine the RAGE TM dimeric structure. Overall, we provide the molecular insights into the switching dimerization of RAGE TM domains, as well as the regulation from the JM domains mediated by the anionic lipids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.