Abstract
In modulated radiotherapy, breathing motion can lead to Interplay (IE) and Blurring (BE) effects that can modify the delivered dose. The aim of this work is to present the implementation, the validation and the use of an open-source Monte-Carlo (MC) model that computes the delivered dose including these motion effects. The MC model of the Varian TrueBeam was implemented using GATE. The dose delivered by different modulated plans is computed for several breathing patterns. A validation of these MC predictions is achieved by a comparison with measurements performed using a dedicated programmable motion platform, carrying a quality assurance phantom. A specific methodology was used to separate the IE and the BE. The influence of different motion parameters (period, amplitude, shape) and plan parameters (volume margin, dose per fraction) was also analyzed. The MC model was validated against measurement performed with motion with a mean 3D global gamma index pass rate of 97.5% (3%/3 mm). A significant correlation is found between the IE and the period and the antero-posterior amplitude of the motion but not between the IE and the CTV margin or the shape of motion. The results showed that the IE increases D2% and decreases the D98% of CTV with mean values of +6.9% and -3.3% respectively. We validated the feasibility to assess the IE using a MC model. We found that the most important parameter is the number of breathing cycles that must be greater than 20 for one arc to limit the IE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.