Abstract
It has been established that the process of producing the Ln2 + xMe2 − xO7 − x/2 (Ln = Gd, Dy; Me = Zr, Hf) nanocrystals by calcination of hydroxides, which, in turn, have been produced by coprecipitation of metal salts, includes several stages. At the beginning, the X-ray amorphous structure of the precursors remains unchanged during dehydration; during subsequent heating to 600–700°C, nanocrystals with a disordered fluorite structure begin to be formed. An increase in the temperature above 700°C leads to an increase in the size of crystallites (coherent scattering regions). This process is accompanied by changes occurring in their local structure. In the nanocrystalline powders of Cd2Hf2O7 and Gd2Zr2O7 synthesized at 1200°C (6 h), the pyrochlore-type superstructure with the lattice parameters doubled relative to fluorite has been revealed. It has also been found that, possibly, the Dy2HfO5 sample at 1600°C (3 h) has a modulated structure.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have