Abstract
This paper shows that, in fatigue tests on copper, a great number of cycles beyond expectation is necessary for determining the fatigue limit. An ultrahigh frequency fatigue testing machine was used andS-N curves covering 1010 cycles were obtained for annealed specimens and for stretched ones. In annealed copper, the fatigue limit appeared at about 9.8 × 109 cycles. Observations were made on the development of slip bands and substructures in the course of a test at the strain level (3.8 × 10-4) of the fatigue limit. The slip bands continued to develop up to about 9 × 109 cycles, but remained unchanged if further cycled. On a searching examination of the behavior of microcracks, one end of which stayed in a grain without propagation, it was proved that fatigue hardening was responsible for the existence of the fatigue limit. Contrary to expectation, cell structures were found after 1010 cycles in such a low strain fatigue. In stretched copper, however, microcracks continued to grow even in the stage beyond 1010 cycles when fatigued at the strain level of the fatigue limit inferred from itsS-N curve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.