Abstract

ABSTRACTAnnealing experiments were carried out on gallium nitride layers, which were grown on sapphire through Metal Organic Chemical Vapor Deposition (MOCVD). Rutherford Backscattering Spectrometry (RBS) was performed on as-grown and annealed GaN samples using a 2 MeV proton beam to study the stoichiometric changes in the near-surface region (750 nm) with depth resolution better than 50 nm. No decomposition was measured for temperatures o up to 800 °C. Decomposition in the near-surface region increased rapidly with a further increase o of temperature, resulting in a near-amorphous surface-region for annealing at 1100 °C. The depth profiles of nitrogen and incorporated oxygen in the decomposed GaN are extracted from the nanoscale RBS data for different annealing temperatures. The surface roughness of the GaN layers observed by atomic force microscopy (AFM) is consistent with RBS decomposition measurements. We describe the range of annealing conditions under which negligible decomposition of GaN is observed, which is important in assessing optimal thermal processing conditions of GaN for both conventional and nanoscale optoelectronic devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call