Abstract

Two new crystalline salts, namely, hypoxanthinium bromide monohydrate, C5H5N4O+·Br-·H2O (I) and xanthinium bromide monohydrate, C5H5N4O2 +·Br-·H2O (II), were synthesized and characterized by single-crystal X-ray diffraction technique and Hirshfeld surface analysis. The hypoxanthinium and xanthinium cations in salts I and II are both in the oxo-N(9)-H tautomeric form. The crystal packing of the two salts is governed predominantly by N-H⋯O, N-H⋯Br, C-H⋯Br and O-H⋯Br inter-actions described by R 2 3(9) and R 2 2(8) synthons. The crystal packing is also consolidated by carbon-yl⋯π inter-actions between symmetry-related hypoxanthinium (HX+ ) cations in salt I and xanthinium cations (XA+ ) in salt II. The combination of all these inter-actions leads to the formation of wave- and staircase-like architectures in salts I and II, respectively. The largest contributions to the overall Hirshfeld surface are from Br⋯H/H⋯Br contacts (22.3% in I and 25.4% in II) .

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call