Abstract

Abstract Horizontal current and density data fields are analyzed in order to validate, from an experimental point of view, the contribution of the advective and Coriolis accelerations and the hydrostatic pressure gradient term to the balance of horizontal momentum. The relative importance of the vertical advection of horizontal velocity in this balance is estimated by solving the quasigeostrophic (QG) omega equation. The analysis of the balance of horizontal momentum is carried out using data from three consecutive high-resolution samplings of the Atlantic jet (AJ) and western Alboran gyre (WAG) on the eastern side of the Strait of Gibraltar. The horizontal velocity reached maximum values of 1.30 m s−1 in the AJ at the surface. The ageostrophic velocity field reaches maximum absolute values of 30 cm s−1 at the surface, thus confirming the supergeostrophic nature of the AJ. At the surface the pressure gradient term reaches absolute values of 8–10 (×10−5 m s−2), the Coriolis acceleration 10–12 (×10−5 m s−2)...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.