Abstract
ABSTRACT We have studied the possible association of daily mortality with ambient pollutant concentrations (PM10, CO, O3, SO2, NO2, and fine [PM2 5] and coarse PM) and weather variables (temperature and dew point) in the Pittsburgh, PA, area for two age groups—less than 75, and 75 and over—for the 3-year period of 1989-1991. Correlation functions among pollutant concentrations show important seasonal dependence, and this fact necessitates the use of seasonal models to better identify the link between ambient pollutant concentrations and daily mortality. An analysis of the seasonal model results for the younger-age group reveals significant multicollinearity problems among the highly correlated concentrations of PM10, CO, and NO2 (and O3 in spring and summer), and calls into question the rather consistent results of the single- and multi-pollutant non-seasonal models that show a significant positive association between PM10 and daily mortality. For the older-age group, dew point consistently shows a significant association with daily mortality in all models. Collinearity problems appear in the multi-pollutant seasonal and non-seasonal models such that a significant, positive PM10 coefficient is accompanied by a significant, negative coefficient of another ambient pollutant, and the identity of this other pollutant changes with season. The PM25 data set is half that of PM10. Identical-model runs for both data sets reveal instability in the pollutant coefficients, especially for the younger age group. The concern for the instability of the pollutant coefficients due to a small signal-to-noise ratio makes it impossible to ascertain credibly the relative associations of the fine- and coarse-particle modes with daily mortality. In this connection, we call for caution in the interpretation of model results for causal inference when the models use fully or partially estimated PM values to fill large data gaps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.