Abstract

The water-sediment interface of lakes is an important and unique area of the water environment; the geochemical behavior of nutrients in this area has a significant impact on the quality of the water environment and ecosystems, especially in shallow lakes. However, most studies do not provide direct in situ evidence for this in shallow lakes in arid regions; in order to explore the coupling relationship between phosphorus (P) and iron (Fe) in a sediment profile, we conducted a high-resolution analysis of liable Fe and P in sediments taken from the Chaiwopu Lake using ZrO-Chelex thin film diffusion gradient technology (ZrO-Chelex DGT). The results show that (1) the vertical spatial distribution trend of the liable P and Fe in the sediments from each sampling site is essentially similar. The contents of the liable P and Fe ranged from 0.004-0.125mg/L and 0.050-0.190mg/L, respectively, and the synchronous distribution of the micro-interface concentration reflects the coupling relationship between them. (2) The correlation analysis of the liable P and Fe concentrations showed that there were significant linear correlations between them (P < 0.05, bilateral). (3) The diffusion fluxes of P and Fe were - 51.76~65.12μg(m2d)-1 and - 451.27~457.06μg(m2d)-1, respectively, and were shown to be negative at the sediment-water interface for most of the samples, which showed that P and Fe were released from the overlying water into the sediments. (4) This research showed that the diffusive fluxes at the different sites are quite different, which indicates that the phosphorus and iron pollution in the sediments of the Chaiwopu Lake is affected by exogenous inputs. There was no significant correlation between P release flux and pH, ORP, conductivity (EC), the TDS of the overlying water, or the pH, salinity (Ca2+, Mg2+), and nutrient (organic matter) content of the sediment. The release flux of Fe is affected by the pH of the sediment. The results of this study provide references for the research of elements in the water-sediment interface of shallow lakes in arid regions, as well as other areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call