Abstract
Groundwater is the main source of water and salt recharge for to lakes in arid regions. Quantifying the groundwater discharge and its nutrient input is important in the evolution of lake environments in the Badain Jaran Desert (BJD), Northwest China. In this study, ten BJD lakes were sampled for 222Rn in April and September 2021, and the 222Rn mass balance model was used to quantify the groundwater discharge rates and derived nutrient fluxes to these lakes. The results showed that the 222Rn activity and the groundwater recharge rate of lake water both present a positively correlated with lake water depth. The hot points of high 222Rn activity in the lake water were consistent with the locations of groundwater discharge areas. According to the 222Rn temporal and spatial distributions, the mean groundwater recharge rates for the ten lakes in April and September were 5.4 ± 0.6 and 7.7 ± 1 mm/d, respectively, and the annual mean groundwater discharge rates varied between 1.1 ± 0.2 and 14.6 ± 1.6 mm/d, with a mean of 7 ± 0.9 mm/d. Given that all the perennial lakes in the BJD have the same groundwater recharge rate as the mean recharge rate of the ten studied lakes, the annual mean groundwater recharge amount received by the lakes in the entire BJD is (5.6 ± 0.7) × 107 m3/a. According to the groundwater recharge amount, the inputs of dissolved inorganic nitrogen, dissolved inorganic phosphorus, dissolved inorganic silicon, total nitrogen, and total phosphorus to the BJD lakes from groundwater were (4.7 ± 0.6) × 105, (3.8 ± 0.5) × 104, (7.9 ± 1) × 105, (7.2 ± 0.9) × 105, (2.5 ± 0.3) × 104 kg/a, respectively. This study provides a reference for quantifying of groundwater discharge rates into salt lakes in other arid regions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.