Abstract

A superplastic Zn-Al alloy in sheet form is formed into a bulge over a circular hole by pneumatic pressure. The geometry, the stress, the strain, and the strain-rate are determined at various points covering the whole specimen and at various stages of the forming process. The complicated shape, and its complicated changes, are represented by introducing an index for the local geometry, called “prolateness,” which is also related to the local stress ratio in a simple way. The biaxial stress is analyzed into a strain-proportional and a strain-rate-proportional component, which represent, respectively, the quasi-solid and the quasi-liquid behavior of the superplastic material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call