Abstract

The progress of spin rectification effect, which has the potential in powering the nanoscopic devices wirelessly, has been impeded by its low conversion efficiency. To solve this problem, a 5.8 GHz planar inverted F-shaped antenna, which is designed to harvest radiated microwave power as well as foster a field enhanced area surrounding a permalloy (Py, Ni80Fe20) monolayer, is presented. The electric and magnetic field are enhanced by ~17.5-fold and ~ 45-fold, respectively. With the proposed antenna, a photovoltage of 0.85 μV can be detected in the monolayer 1.5 m away from the transmitting antenna, with input power of 30 dBm. This work provides an effective method to enhance the spin rectification effect signal in the far field region and paves the way for spintronic devices to be potentially utilized in practical wireless applications, such as quantum information, photovoltaics, and nanogenerator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call