Abstract

The removal of iron as magnetite from a high iron bauxite ore was investigated by carbothermal reduction and magnetic separation. Thermodynamic calculations using HSC Chemistry 6·1 were utilised to determine the equilibrium compositions of the reaction products as a function of temperature and carbon additions. Under equilibrium conditions, the formation of hercynite (FeAl2O4) restricted the conversion of haematite to magnetite and the equilibrium calculations were adjusted so that the amount of hercynite was limited. Also, thermogravometric analysis and differential thermal analysis with evolved gas analysis tests were performed in order to elucidate the reduction reactions. Furthermore, high temperature reduction experiments were carried out in order to quantify the effects of processing time, temperature and carbon additions on the amount of the magnetic fraction. The degree of removal of the iron and the alumina recovery were determined. For a given set of conditions, the maximum iron removal as magnetite could only be achieved by quenching the reacted samples. The results demonstrated that at a reduction temperature of ∼1073 K, ∼58% of the iron could be removed in the magnetic fraction with an alumina recovery of ∼85% in the non-magnetic fraction.On a examiné l’enlèvement du fer sous forme de magnétite d’un minerai de bauxite à haute teneur en fer, au moyen de la réduction carbothermique et séparation magnétique. On a utilisé des calculs de thermodynamique avec ″HSC Chemistry 6·1″ pour déterminer les compositions d’équilibre des produits de la réaction en fonction de la température et des additions de carbone. Sous les conditions d’équilibre, la formation d’hercynite (FeAl2O4) restreignait la conversion d’hématite en magnétite et l’on a ajusté les calculs d’équilibre afin de limiter la quantité d’hercynite. On a également effectué des essais de TGA-DTA avec EGA afin d’élucider les réactions de réduction. De plus, on a exécuté des expériences de réduction à haute température afin de quantifier l’effet de la durée de traitement, de la température et des additions de carbone sur la quantité de fraction magnétique. On a déterminé le degré d’enlèvement du fer et de la récupération d’oxyde d’aluminium. Pour un ensemble donné de conditions, on peut obtenir l’enlèvement maximal de fer sous forme de magnétite seulement par trempe de refroidissement des échantillons réagis. Les résultats ont démontré qu’à une température de réduction d’environ 1073 K, on pouvait enlever environ 58% du fer dans la fraction magnétique, avec une récupération de l’oxyde d’aluminium d’environ 85% dans la fraction non magnétique.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call