Abstract

We report on a study of the use of repetitive ultrashort pulsed plasma discharges in stabilizing a lifted methane jet diffusion flame in elevated temperature (855 K-975 K) vitiated coflow. CH chemiluminescence images are used to record the flame liftoff height, which serves as a measure of the flame stability. The results show that, for the same reduced electric field (E /n), the stabilizing ability of the discharge in the investigated temperature range diminishes with increasing coflow temperature. Based on the results of a zero-dimensional transient chemistry simulation, it is conjectured that the reduced propensity for stabilization at elevated temperature is caused by the rapid depletion of H2 and CO formed in the postplasma gas, under high ambient temperature conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.