Abstract
SUMMARYIn this paper, we aim to classify two classes in children by using single‐channel electroencephalogram (EEG). EEG has been used to define neural patterns and to adjust the wide applicability to a larger population of healthy and diseased users. Specialized EEG devices have recently developed as for compact and portable measurement system using them in the real environment. If there is a multiplex state estimation system with EEG through a specialized EEG device, it would be a powerful tool for neuroscience studies and clinical applications. We first focused on the state of concentration; therefore, two kinds of single‐channel EEG signals (during meditation and concentration) from 10 children were measured. Recordings were processed to remove artifacts, and then extracted their periodic or nonperiodic features by three methods (Fourier transform, wavelet transform, and empirical mode decomposition). Elastic net logistic regression constructed predictive models to classify two classes of the optimized extracted features. A model showed 0.988 area under the receiver‐operating characteristic curve when wavelet transform was selected as feature extraction method. We next construct a multiplex state estimation system. Finally, we will make portable applications using a specialized EEG device that include the multiplex model and encourage children to develop the child's sense.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.