Abstract

Negative bias temperature instability (NBTI) degradation and recovery have been investigated for 7-50-nm non-nitrided oxides and compared to thin 1.8- and 2.2-nm nitrided oxides from a dual work function technology. A wide regime of stress fields from 2.5 to 10 MV/cm has been covered. Thermal activation has been studied for temperatures from 25 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">deg</sup> C to 200 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">deg</sup> C. The NBTI effect for the nitrided oxide is larger than for non-nitrided oxides. The percentage of threshold shift <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">V</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> which is ldquolostrdquo during a long measurement delay-which is the quantity leading to curved <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">V</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> versus stress-time curves and to errors in extrapolated lifetimes-is about equal for nitrided or thick non-nitrided oxides. The fraction of recovered <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">V</i> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">th</sub> is strongly dependent on stress time but only weakly dependent on stress field. Recovery in thick oxides leads to exactly the same problems as for non-nitrided oxides, and clearly, a fast measurement method is needed. The effect of short-term threshold shifts has been studied for extremely short stress times down to 200 ns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call