Abstract
Graphene, new generation advance material of two dimensional hexagonal lattice having extraordinary optical signatures, is used as coating material to enhance the surface plasmon resonance (SPR) effect of core@shell metal nanospheres. In a core@shell nanosphere, we have chosen metal as a core and graphene monolayer (GML) as a shell. We have analysed optical signature of coated and non-coated nanospheres in terms of extinction efficiency (Q ext) and tunabilty of surface plasmon resonances using electrostatic model, where particle size is much smaller than the wavelength of incident light. We analysed this model over different metals (silver, gold and aluminium) core, coated with different thickness of GML (d = 0.1 to 0.5 nm). These core@shell nanospheres are embedded in refractive index media of air (n em = 1), SiO2 (n em = 1.47) and TiO2 (n em = 2.79). The Q ext has been calculated by varying both the core radii as well as the GML shell thickness. Graphene-coated metal nanosphere exhibits SPRs that have wide range tunability from 300 to 1500 nm. In the presenting work, we also analysed that extinction efficiency for metal@GML is higher in TiO2 than others. The optimum value of GML shell thickness is 0.4 nm for TiO2, the magnitude of extinction efficiency is maximum for the optimum thickness. The tunability of these plasmonic resonances is highly dependent on the core@shell material, thickness of Graphene shell and surrounding environment while non-coated metal nano-spheres do not show appropriate SPR tunability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have