Abstract

To better understand the mechanical responses of ultrananocrystalline diamond (UNCD) under various loading conditions, a numerical study is performed to investigate the size, loading rate and temperature effects on the material properties of pure and nitrogen-doped UNCD films. Since the UNCD growth mechanism is not completely understood yet, a simple procedure by combining kinetic Monte Carlo and molecular dynamics (MD) methods is developed to form a polycrystalline UNCD block with an artificial grain boundary (GB). By randomly inserting different numbers of nitrogen (N) atoms into the GB of the resulting polycrystalline UNCD films, N-doped UNCD films can be formed. The responses of the simulated pure and N-doped UNCD films with various grain sizes are then investigated by applying displacement-controlled tensile loading under different rates and temperatures in the MD simulations. The simulation results presented in this paper provide a better understanding of the combined size, rate and thermal effects on the material responses of pure and N-doped UNCD films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.