Abstract

Fibrous long spacing collagen (FLS) fibrils are collagen fibrils that display a banding with periodicity greater than the 67nm periodicity of native collagen. FLS fibrils can be formed in vitro by addition of α1-acid glycoprotein to an acidified solution of monomeric collagen, followed by dialysis of the resulting mixture. We have investigated the ultrastructure of FLS fibrils formed in vitro using the atomic force microscope (AFM). The majority of the fibrils imaged showed typical diameters of ∼150nm and had a distinct banding pattern with a ∼250nm periodicity. However, we have also observed an additional type of FLS fibril, which is characterized by a secondary banding pattern surrounding the primary bands. These results are compared with those obtained in past investigations of FLS ultrastructure carried out using the transmission electron microscope (TEM). The importance of the fibril's surface topography in TEM staining patterns is discussed. Images of FLS fibrils in various stages of assembly have also been collected, and the implications of these images in determining the mechanism of assembly and the formation of the characteristic banding pattern of the fibrils is discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call