Abstract

Calf skin type I collagen fibrils were regenerated from acidic solution and imaged with contact mode atomic force microscopy in air, water, and buffer solution. When imaged in air at a contact force of 20-150 nN, collagen fibrils exhibited a distinct transverse banding pattern with a period of 65 nm, consisting of high ridges and shallow grooves. The force dependence of the images suggests that such banding pattern is attributed to the transverse contraction of the fibril upon dehydration during sample preparation, which reflects the tangential mass density across the fibril. Imaging in water and phosphate buffer solution at a contact force of 15-80 nN revealed hydrated collagen fibrils with smooth surfaces. The rigidity of the collagen fibrils decreased considerably upon hydration. Scanning the cantilever tip in an aqueous medium at a contact force of 90-280 nN enabled us to probe subunit arrangement in the bulk region of the collagen fibril. The results indicate that the molecular assembly in the hydrated fibril is akin to that in the intact form. The image resolution was improved by stabilizing the collagen molecules through crosslinking with glutaraldehyde, which served to resolve microfibril-like structure on the fibril surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.