Abstract

A comprehensive elastic-plastic constitutive model is employed in a finite element analysis of fatigue crack closure. An improved node release scheme is used to simulate crack growth during cyclic loading, which eliminates the associated numerical difficulties. New definitions of crack opening and closing stresses are presented in this paper. Special attention is paid to a discussion of some basic concepts of fatigue crack growth and crack closure behaviour. Residual tensile deformation and residual compressive stress are found to be two major factors in determining the crack opening stress. A comparison of crack tip node release at the maximum or minimum load of each cycle is made and the disadvantage of releasing crack tip node at the minimum load are pointed out.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call