Abstract

We consider the possibility of improvement of metal–metal waveguides designed for terahertz quantum cascade lasers (THz QCL) with respect to waveguide losses. We calculate solving Helmholtz equation by transfer matrix method. The essence of our work is the error analysis. We notice that the refractive indices of metals in THz range are known with very poor accuracy. We present divergences among numerous measurements and calculations reported in the literature. In addition, we point out that optical properties of metals and semiconductors depend on temperature which varies throughout the working device. At last, we present our scanning electron microscope photos showing that semiconductor–metal and metal–metal interfaces are not perfect. In adjacent areas mixing of materials occurs and hence the spatial refractive index distribution is perturbed. Our error analysis shows that today’s accuracy of refractive index data (±37% is the best reported in the literature) makes the problem of optimization of considered waveguides ambiguous. According to our calculations the precision level of about ±10% is required. Once improving the precision turns out to be impossible, we suggest focusing the design works on criteria such as choosing metals minimizing the risk of damaging the active region by atom migration, providing the best ohmic contact or allowing the most effective heat removal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.