Abstract

With the advent of the concept of smart-grid, the power system infrastructure is being equipped with high-bandwidth data communication and embedded computing infrastructure. The communication infrastructure has gained importance in the transmissions subsystems due to increasing use of the wide area measurement and monitoring using Phasor measurement units (PMUs). The amount of data collected by PMUs is large and they need to be transferred to regional and global data centers where real-time state estimation, and protection, stabilization decisions are made. As a result, having sufficient bandwidth in the communication infrastructure as well as proper delay characteristics will matter in the correct operation of these various wide area measurement system (WAMS) based control schemes. We have created a communication and power system co-simulation infrastructure called GECO which allows us to co-simulate power systems dynamics along with the communication network activities in a more realistic manner than past simulation environment. In this paper, we consider the effect of the appropriate network topology, bandwidth, delay etc. on two PMU based WAMS applications, namely All-PMU monitoring, and out-of-step protection. These experiments not only show the efficacy of the GECO framework in planning the smart grid communication infrastructure, it also provides case studies on how to go about using GECO in smart-grid design activities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call