Abstract

The phonon modes of crystalline benzoic acid have been investigated using terahertz time-domain spectroscopy, rigid molecule atom-atom model potential and plane-wave density functional theory lattice dynamics calculations. The simulation results show good agreement with the measured terahertz spectra and an assignment of the terahertz absorption features of benzoic acid is made with the help of both computational methods. Focussing on the strongest interactions in the crystal, we describe each vibration in terms of distortions of the benzoic acid hydrogen bonded dimers that are present in the crystal structure. The terahertz spectrum is also shown to be highly sensitive to the location of the carboxylic acid hydrogen atoms in the cyclic hydrogen-bonded dimers and we have systematically explored the influence of the observed disorder in the hydrogen atom positions on the lattice dynamics.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call