Abstract
The phonon modes of crystalline benzoic acid have been investigated using terahertz time-domain spectroscopy, rigid molecule atom-atom model potential and plane-wave density functional theory lattice dynamics calculations. The simulation results show good agreement with the measured terahertz spectra and an assignment of the terahertz absorption features of benzoic acid is made with the help of both computational methods. Focussing on the strongest interactions in the crystal, we describe each vibration in terms of distortions of the benzoic acid hydrogen bonded dimers that are present in the crystal structure. The terahertz spectrum is also shown to be highly sensitive to the location of the carboxylic acid hydrogen atoms in the cyclic hydrogen-bonded dimers and we have systematically explored the influence of the observed disorder in the hydrogen atom positions on the lattice dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.