Abstract

The initial shell solidification of liquid steel in the mold has significant influence on both surface and internal quality of the final slab, and it is mainly determined by the high transient high temperature thermodynamics occurring in the mold. This study investigated the effects of casting parameters like casting temperature, mold oscillation frequency, and stroke on the initial solidification of a Sn-Pb alloy through the use of a mold simulator to allow the clear understanding of the inter-relationship between irregular shell solidification, heat transfer, negative strip time (NST), and casting conditions. Results suggested that the shell surface oscillation marks (OMs) are strongly depending upon the fluctuations of meniscus responding temperatures and heat flux. An abrupt sudden fluctuation of high frequency temperature and heat flux at the meniscus during the NST would deteriorate the shell surface and leads to deep OMs. The fluctuations of responding temperature and heat flux are determined by the NST, meniscus solidification, and oil infiltration, which in turn are influenced by casting conditions, like casting temperature, oscillation frequency, stroke, etc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call