Abstract
The ever-increasing demand for high-quality solutions drives research toward more sophisticated decision-making solutions. In the field of decision making, the ability to solve complex real-world problems is of paramount importance. To this end, fuzzy sets are used, which offer the possibility of incorporating uncertainty into the values describing decision options. This study focuses on Pythagorean fuzzy sets, an extension of classical fuzzy sets, providing even more tools for modeling real-world problems by presenting a distance measure for these specific sets. A verification of the characteristics of the proposed distance measure has been carried out, proving its validity. The proposed measure is characterized by a more straightforward formula and thus simplifies the calculations. Furthermore, to confirm its usability, a multi-criteria decision-making methodology is presented, the results of which are compared with two multi-criteria decision-making methods, namely, PF-TOPSIS and PF-VIKOR, and another distance measure previously presented in the literature. The comparative analysis highlights lower variability in terms of preference values calculated using the proposed distance measure, which confirms the stability and reliability of the newly proposed distance measure while maintaining low computational complexity. Moreover, a high correlation with rankings calculated using PF-TOPSIS ensures its utility in terms of decision making.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.