Abstract

A structured population model of a single population having two distinct life stages is considered. The model equations, consisting of a hyperbolic partial differential equation coupled to an ordinary differential equation, can be reduced to a single, scalar functional differential equation. This allows us to use the well-developed dynamical systems theory for functional differential equations in order to study the dynamical system generated by the more complicated coupled system. A precise relation is established between the dynamical systems generated by each system of equations and a correspondence between their respective global attractors is made. The two systems are topologically equivalent on their respective attractors. These relationships are used to determine sharp sufficient conditions for the uniform persistence of the population.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call