Abstract

In this work, we give an introduction to the theory of nonlinear functional differential equations of pointwise type on a finite interval, semi-axis, or axis. This approach is based on the formalism using group peculiarities of such differential equations. For the main boundary-value problem and the Euler-Lagrange boundary-value problem, we consider the existence and uniqueness of the solution, the continuous dependence of the solution on boundary-value and initial-value conditions, and the “roughness” of functional differential equations in the considered boundary-value problems. For functional differential equations of pointwise type we also investigate the pointwise completeness of the space of solutions for given boundary-value conditions, give an estimate of the rank for the space of solutions, describe types of degeneration for the space of solutions, and establish conditions for the “smoothness” of the solution. We propose the method of regular extension of the class of ordinary differential equations in the class of functional differential equations of pointwise type.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.